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Problem specification

I Integrable Hamiltonian H0 plus perturbation Hp

H = H0 + εHp

As the ε increase, it cause a non-linearity in the system.

I Not every system can be splitted into ”regular” + ”perturbation”

H = Hd(p,q) + Veff (q),

there can exist minima in
”effective potential” Veff (q)
with energy E0. Now increase
of energy 4E above E0 cause
increase of non-linearity.



Example of integrable systems
1DOF & 2DOF harmonic oscillator, fundamental frequencies

I 1DOF harmonic oscillator, phase space 2D

H = 1/2
(
p2 + ω2x2

)
⇒ ẍ + ω2 x = 0

trajectory lies on S1 for every energy level

I 2DOF harmonic oscillator

H = 1/2
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2
1

)
+ 1/2

(
p2
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yy

2
2

)
4D phase space (x , px , y , py )
trajectory lies on torus S1 × S1

fundamental frequencies ωx , ωy



Theorems from theory of dynamical systems
KAM theorem, Birkhoff normal form

H = H0 + εHp

I Kolmogorov-Arnold-Moser (KAM) theory - Most of the tori will
survive small perturbation.

I Birkhoff normal form - The Birkhoffs theorem ensures the existence
of a canonical transformation putting a Hamiltonian system in
normal form up to a remainder of a given order.

I KAM around elliptic point (minima in eff. potential) - for 2 DOF:

k1 ω1 + k2 ω2 = 0, k1 + k2 < 4

for resonances 1:1, 1:2, 2:1 we can’t construct normal forms.

System will oscillate in a quasi-periodic motion, if the parameter ε
remains small. As the parameter ε grows, the condition ε << 1 becomes
violated, the nonlinear parts in the Hamiltonian become stronger, and we
enter the nonlinear, chaotic regime of its motion.
Increase of non-linearity of a system moving in vicinity of its local stable
equilibrium point (minimum) is caused by increase of its energy.



How to measure chaos?
Power Spectrum, Poincare sections, Maximal Lyapunov exponent

I Power Spectrum - Fourier transformation

I Poincare sections

I Maximal Lyapunov exponent

λL = lim
d0→0
t→∞

(
1

t
ln

(
d(t)

d0

))

Lyapunov exponent is de-
scribing the two orbits sepa-
ration and hence the measure
of chaos.

(Problem: Maximal Lyapunov exponent in general relativity)



String loop introduction
Current-carrying string loop and BH

I string loop threaded on to axis of black hole

I string oscillate in x-z plane, propagating in y direction.

I string tension has µ (prevents expanding) & scalar field ϕ crates
overall current J - creates angular momentum (prevents collapsing)
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I Hamiltonian - dynamical part (red), effective potential (blue).



Normal form construction
Construction of normal form in the minima of effective potential

I Effective potential Veff (Schwarzschild):

Veff(r , θ) =
1

2

(
1− 2M

r

)(
x +

J2

x

)2

Minima is located at Xα
0 = (r0, θ0)

I New coordinates and momenta Xα = Xα
0 + εX̂α, Pα = εP̂α

H(P̂α, X̂
α) = H0 + εH1(X̂α) + ε2H2(P̂α, X̂

α) + ε3H3(P̂α, X̂
α) + . . .

rescale energy at min.: H0 = 0 & local minimum: H1(X̂α) = 0

H = 1/2
(
p̂2

r + ω2
r r̂

2
)

+ 1/2(p̂2
θ + ω2

θ θ̂
2) + εH3(P̂α, X̂

α) + . . .

is Hamiltonian in the vicinity of the local minimum



Fundamental frequencies

H = 1/2
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2
)

+ 1/2(p̂2
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θ θ̂
2); ω2

r =
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, ω2
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r3

”problematic” resonance radii: 1:1 (r ∼ 5.5), 1:2 (r ∼ 8.7); (2:1 too shallow)



Fate of resonant & non-resonant torii

Energy 4E = 0.01 & only tori for resonance 1:1, 1:2, (2:1) are destroyed



Growth of non-linearity for individual trajectory
Trajectory / Poincare section / Power Spectrum











String ”focusing” problem

(a) Regular (E = 5.5) (b) Chaotic (E = 8)

I Transition from the regular to the chaotic regime of the motion is
the solution to the ”focusing” problem of the string trajectories from
T. Jacobson and T. P. Sotiriou:
String dynamics and ejection along the axis of a spinning black hole



(c) E = 3.3 (d) E = 5.5 (e) E = 5.7 (f) E = 8



(g) E = 5 (h) E = 8 (i) E = 8.35 (j) E = 9



Chaos is comming. . .



Summary and future work

I Increase of non-linearity is caused by increase of energy

I Explanation of string ”focusing” problem

I Estimation of transition energy (regular/chaotic)

I Behavior at resonance radii

Thank you for your attention.

This presentation will be found at http://www.physics.cz/research/
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